INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2015-16

Statistics - II, Semesteral Examination, April 27, 2016

Answer any four questions Maximum Marks: 100

1. Let X_1, X_2, \ldots, X_n be a random sample from a population with density $f(x|\theta) = \exp(-(x - \theta)), x > \theta$, where $-\infty < \theta < \infty$ is unknown. Consider testing at level α

 $H_0: \theta \leq 0$ versus $H_1: \theta > 0$.

(a) Show that the conditions required for the existence of UMP test are satisfied here.

(b) Derive the UMP test of level α .

(c) Find the minimal sufficient statistic for θ . [25]

2. Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$ where both μ and σ^2 are unknown.

(a) Derive the generalized likelihood ratio level α test for testing $H_0: \sigma^2 = 1$ versus $H_1: \sigma^2 \neq 1$.

(b) Is this also the UMP level α test? Justify. [25]

3. Let X denote the number of independent $\text{Bernoulli}(\theta)$ trials before the first success occurs.

(a) What is the probability mass function of X?

(b) Find the Fisher Information $I_1(\theta)$ contained in X.

Let X_1, X_2, \ldots, X_n be a random sample from the distribution of X with $0 < \theta < 1$ unknown.

(c) Find an estimator $T_n = T_n(X_1, \ldots, X_n)$ such that

$$\sqrt{n} (T_n - \theta) \longrightarrow N\left(0, \frac{1}{I_1(\theta)}\right).$$

(d) Is it true that any estimator as in (c) above is a consistent estimator of θ ? Why? [25]

4. In an ecological study 5 independent attempts were made to photographically capture (or to camera trap) a particular tiger. The fourth attempt provided the only success. The success probability, θ , is known as the detection probability. Assume that the prior distribution on θ is Beta(0.2, 1).

(a) Derive the posterior distribution of θ given the data.

(b) Find the highest posterior density estimate of θ .

(c) Find the posterior mean and posterior standard deviation of θ .

(d) Consider testing $H_0: \theta \leq 0.25$ versus $H_1: \theta > 0.25$. Explain the Bayesian approach for this. [25]

5.(a) Let S and T be two statistics such that S has finite variance. Show that

$$\operatorname{Var}(S) = \operatorname{Var}(\operatorname{E}(S|T)) + \operatorname{E}(\operatorname{Var}(S|T)).$$

(b) Suppose (X_1, X_2, \ldots, X_n) has probability distribution $P_{\theta}, \theta \in \Theta$. Let $\delta(X_1, X_2, \ldots, X_n)$ be an estimator of θ with finite variance. Suppose that T is sufficient for θ , and let $\delta^*(T)$, defined by $\delta^*(t) = E(\delta(X_1, X_2, \ldots, X_n)|T = t)$, be the conditional expectation of $\delta(X_1, X_2, \ldots, X_n)$ given T = t. Then arguing as in (a), and without applying Jensen's Inequality, prove that

$$E(\delta^*(T) - \theta)^2 \le E(\delta(X_1, X_2, \dots, X_n) - \theta)^2,$$

with strict inequality unless $\delta = \delta^*$ (i.e., δ is already a function of T). [25]